Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.
نویسندگان
چکیده
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
منابع مشابه
Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers.
A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I3(-)/I(-) redox shuttle and the Co(1,10-phenanthroline)3(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the infl...
متن کاملSurface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition
We report here the exploitation of ultrathin layers of Al2O3 deposited via atomic layer deposition (ALD) on SnO2 photoanodes used in dye-sensitized solar cells featuring the I3 /I couple as the redox electrolyte. We find that a single ALD cycle of Al2O3 increases the lifetimes of injected electrons by more than 2 orders of magnitude. The modified SnO2 photoanode yields nearly a 2-fold improveme...
متن کاملComparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C
The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD) titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH) while they are one orde...
متن کاملThe Influence of Surface Alumina and Silica on the Photocatalytic Degradation of Organic Pollutants
Practical photocatalysis for degradation of organic pollutants must take into account the influence of other chemicals. Significant Al deposition on titania can occur at naturally occurring concentrations of dissolved Al. This paper reviews the author’s work on the influence of deliberately deposited hydrous oxides of aluminium on the behavior of a ~130 m g rutile TiO2, and then compares the be...
متن کاملTailoring the Energy Band Gap of Transition Metal Doped TiO2 Thin Film
Water splitting for hydrogen production under sunlight using TiO2 as photo catalyst provides a better route for solar energy and attracts the attention of many researchers. The photo catalytic activity of TiO2 under sunlight irradiation depends on the band gap energy. The transition metal doped TiO2 shows an edge over TiO2 in optical absorbance and photo catalytic activity. Thin film of Cr dope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 29 2 شماره
صفحات -
تاریخ انتشار 2013